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N Period August 1, 1982 - October 31, 1983

N B
o During this period the following scientists and students were supported,
in addition to the principal investigator:

G. Beylkin Post-Doctoral Scientist
K. Golden Graduate Student
B. LeMesurier Graduate Student

The following papers have appeared, have been submitted for publication,

A
-t‘ or are in the final stages of preparation: f

K. Golden and G. Papanicolaou. Bounds for effective parameters of
heterogeneous media by analytic continuation. Comm. Math. Phys. 90 (1983),
PP. 473-491,

AD-A140 512

" G. Beylkin, Gaussian beams and representation of the Green's function.

o) Submitted to Wave Motion.

-‘.Q

) D. McLaughlin, G. Papanicolaou and C. Pironneau. Convection of Microstructure.
{ Submitted to SIAM J. on Applied Mathematics.

EN

L G. Papanicolaou. Diffusions and random walks in random media. 1In

{{: Mathematics and Physics of Disordered Media, Springer Lecture Notes in

N Mathematics #1035, 1983.

R. Figari, E. Orlandi and G. Papanicolaou. Diffusive behavior of a random
walk in a random medium. Proceedings of Kyoto Conference, 1982, N, Ikeda,

editor, to appear.

[ Y
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a

G. Papanicolaou. Macroscopic properties of composites, bubbly fluids,
suspensions and related problems. Eyrolles, France, 1984, to appear.
(These are the lecture notes for a series of 13 lectures given in July 1983.)
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D. Dawsor and G. Papanicolaou. Random wave processes. In preparation.

Remarks on the research effort

Beylkin, who is now permanently at Schlumberger-Doll Research,
Ridgefield, Conn., worked on the use of Gaussian beans tc represent wava
fields at high frequencies in a wanner thet is insensitive to singularities
such as caustics. Several investigators have been interested in this subject
recently (at Cxxon in Housten and in New Jersey, at Schlumberger and else-
where), although there is no clear consersus yet regarding the usefulness
of beams relative to more couventional gecometrical optics methods. One of
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the principal objectives of Beylkin was to find how the beam representation
could help in the analysis of random media.
is a very serious limiting factor there (recent work of B. White at Exxon
has analyzed wave fields at high frequency in a2 random medium up to the

onset of caustic formation).

The presence of singularities

Papanicolaou and Golden continued their work on the analytic continuation
Golden is writing his dissertation now and will obtain his degree

A complete description of progress in this area will be given
The enclosed paper gives an idea of what had been acomplished until

B. LeMesurier has been working on the focusing singularity for the
nonlinear Schrodinger equation, exclusively by numerical computations up
The analysis of the focusing singularity is our principal concern
We want to develop accurate and well structured computational schemes
for analyzing singularities in nonlinear beams.
shown (with Weinstein and McLaughlin last year; the final write-up on this
is still in preparation), the focusing singularity requires deep and difficult
analysis for its solution.

As our analytical work has

It is also a basic problem that arises in many

O FI0
el 4 ]
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AN

Some work on random media is reported in the enclosed papers.
work that was done earlier and is continuing at a much reduced pace now.

~

applications in nonlinear wave propagation.

This is

The works with Dawson and with McLaughlin and Pironneau were discussed
The paper with McLaughlin and Pironneau is included.
do much more numerical work in connection with this problem and we will
move in this direction in the near future.

We want to

The paper with Dawson is in

(A copy of the preliminary version was sent earlier.)
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A SUMMARY OF WORK THIS SUMMER ON THE

NON-LINEAR SCHRODINGER EQUATION
B. LeMesurier

The equation is
fu, + Mu + |el?a=0 on [0,21]7

with periodic boundary conditions.

The work done was almost entirely numerical, although some
attempts were made to extend results from the case of u in
Schwartz class on IRZ.

Some previous work of this nature has been done by P.L. Sulem,
Cl Sulen and A. Patera [1l], giving at least one exam le of initial
data that seems to evolve to "blow up," that is supju + = in
finite time. I have used their algorithm, as follows

Writing u? K - M < j,k < M-1 for the complex Fourier
[4

components of u values on a grid 2M x2M at time step n ,
the partially implicit scheme '

., n+l n
i(u -u) l,, n+l n 3, n2.n 1, n-1,2 n-1 _
T + 5{bu +Au) + Fiu|un - Fjut T = 0
gives the Fourier transformed equation \\\\
N

2i ,~n+l An . 2,,.2, ,an+l  ~n n 2.n n-1,2 n-1
— A - A - -+ N -+ R + - =
pr g,k T Uy, ) - GTRTY g+ )+ 3 (un | T T R P

ik

I have worked with M a power of two, usually 32, to allow greatest
speed in computation of Fast Fourier Transforms.

Algorithms were written for these as this turned cut to be
faster than the available packaged code (N.C.A.R.) for general M.

Input Parameters

~

In addition to an array of initial values for u , therec are

dt the time step sirze
ttime the maximum time to which solution will
be continued
umax a maximum value for max u
The solver stopsz when cithor the ttime or unmax

limit is attain.d.
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2
Y IPF graphics output is generated
; every IPF time-steps
e ISF printed output as specified below
A8y is generated every ISF time-steps
i\ﬁ Typically ISF << IPF
- Output
e The graphics output currently consists of an array of values
N of |u| , with boundary values repeated at both boundaries. This
2 is input to contour plotting and other programs.
" The current time is also output. (Other'graphics output,
in particular phase information, is now being added.)
o
g The printed data consists of a list of the above input
Tt parameters, and the following (Additions are frequently made to
- this list as new questions arise)
& 5= |ul? ) -
‘“:-\-::; - }
- 2 1, .4 J
‘ H=[ (Jva]® - Flui™)
5& These are conserved by the P.D.E. but not the algorithm, so
e measure accuracy of the solver.
::'
= max |u| ] These three should all "blow-up" for
] suitable initial data.
oo I |Vu[2
-
-

.
()
]
n‘«‘ull.

e

The remaining cuantities are "localized"; the integrals are taken
over a disc in the center of the period. This part of the output
was added after summer, principally to¢ study the variance of part
of the data, which in the Schwartz class data case is the key to
proving blow-up.

“n,
PAR
e
T
(PR
S

Thus a new input parameter RL is added, and
B = {(x,y) :ix-n[2+ly-wi2 < (2nRL)2} in the following list of output

quantities [
- 2.2 2 2 2
Vloc~ i jul“r r° + |x=m|° + |y-n] ,

*
Various factors of 4n2 atc. are onitted.
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Observations

Initial data has mostly been chosen with a "bump" shape:
one or two maxima near the period's center, dying off to small
values (and small gradients) near the boundary. All have been
real valued, and most have had H < 0, a condition guaranteeing
blowup in the Schwartz class (i.e. all space) case.

The results has been, consistently, growing and narrowing
of the bump at an accelerating rate, as expected from the all
space case. However limitations on resolution only allow a
growth in max|u| by a factor of about 3 before computational
errors become substantial: a finer grid will be needed in later
work. .

As one hope is that the evolution of a bump to blow-up
is mostly local (not affected much by values away from the bump
so long as they are small or flat, say) experiments have been
done where the central bump is left unchanged, but the values
outside are set to various different constants (smoothly connected
to the bump).

The results are promising: the rate and nature of the blow-up
changes little, and the near-constant outer region evolves much
as if the bump were not present. That is, it
retains constancy in space and the same absolute value, to a
fair degree. A second localization test was the use of two
separated bumps, as below.

The evolution was compared to the

evolution of data with just one or
the other bump.

Again the results were pleasing:
the two bumps seem to evolve in ignorance
of each other,
h 'S

T cvooo aodbion 7%

Later work (after the summer) has studied the lccalized
variance of a bump, as mentioned above. The motivation is the
result

2

aV gy, vV = J [u(x,t)}zlxlzdx for the all-space case.

Local variances have been studied with the cutoff well down the
shoulder of a bump, with and without radial symmetry, and with
the valuec outside the cutoff not necessarily going to zero. (The
value near the boundary has always bcen a constant, initially.)
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The local variance has consistently evolved with

2
d v
dtz loc

N 8 L]

Hloc

In the case of localization containing the support of the initial
data, the ratio seems to be a little less. This is reasonable
as u(x,0) = C , a constant gives Vloc = constant, H < 0.

As yet, has not got near 0 in the runs, and
it is not clear wﬁether or not it would approach close to 0
before blow-up occurs. This question awaits higher resolution

~ computations.

P, L. Sulem, C. Sulem and A. Patera, "Numerical Simulation
of Singular Solutions to the Two-dimensional Cubic
Schrdédinger Equation." . In the thesis of C. Sulem,
L'Université Paris-Nord.

[1]




Thesis of Ken Golden. Outline.

1. The Analviic Continuation Method for Two-Component Media

Let (2,F,P) be~a probability space and €(x,w) be a stationary random- field
on X e RY and o € Q. For two-component media let e(w) = elxl(m)-kezxz(w)
be the dielectric constant at the origin in Rﬁ of the realization w€ @ of
the material, where xl==l if medium 1 occupies the origin and xl==0 other-
wise, similarly for Xy The effective dielectric constant of the composite

may be defined as

e* = J( P (dw)e () E (w) -'ék , .‘ (1)
Q

where E is the electric field at the origin with average Zk , a unit vector
in the kth direction. It is useful to consider the function F(s) = 1-m(h)

where m(h) ='e*/€2(€1/€2) and s = 1/(1-h) . Maxwell's equations yield a
>

. resolvent expression for E so that [

=1+ =+
F(s) = J P(dw)x; (s +Tx;) “e e, (2)
9}
where [ = V(-A)-lv- . The spectral theorem in an -appropriate Hilbert space
then gives 1
F(s) = { du(z) (3)
] 8 -2
0

where U is the positive Borel measure on [0,1) arising from the family of projec-
tions associated with the self adjoint operator in . The representation (3)
can also be proved by noting that Im(-F) > 0 when Im(s) > 0 and that F is

analytic off [0,1) with F() = 0. Then a general theorem in furnction theory

PV -
‘.n.n..v‘ Lot

.

B gives (3).

"-:‘:\

2o For |[s| > 1 we can expand (2) about a homogeneous medium (h=1 or s=w), 1
|
|

X0 X 4 T |
F(s) = Jf P(du),f-;l— - 5+ S - ] . (4) |
Q S s ‘
-1 9
where rkk = 5§— (-0) 1 =—=- . Equating (4) to the 1 expansion of (3)
. Xy a%y s
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;: determines the moments of U . Then (3) provides the analytic continuation of
i’ - (4) from |s| > 1 to the full domain of analyticity of F(s). If (4) is assumed
1.' known only to first order, then only the mass Py of u 1is fixed, where Py
%;ﬂ is the volume fraction of medium 1. Under this assumption we obtain for fixed
:;}: s € [0,1) extremal values of the linear functional Fs(u) by evaluating (3)

with Dirac point masses, since they are the extreme points of the set of positive

j{\ Borel measures on [0,1) with fixed mass. The resulting bounds restrict F (1)
2y

}{ to a reglon in the complex plane bounded by two c1rcular arcs, which give for

> r + <e* < +
S eal s the classical Wiener bounds (pl/e1 p2/€2) e P1E) T PyE, 1f
. the material is further assumed to be statistically isotropic, then it is possible
}f' to calculate the second term in (4). This F known to second order can be

T transformed to a function of the type (3) known only to first order, the extremi-
,.‘

:ﬁf zation of which gives the Hashin-Shtrikman bounds, which were first found using
" a variational principle. The transformation procedure works to any order in (4).
N

>

\‘_ '

{f: 2, Extension to Multicomponent Media
{ As Bergman [6] and Milton [7] point out, it is not clear from the
SN two-component case how to extend the analytic method to three or more components.
f?: We now describe such an extension. TFor simplicity we consider only three-component
5?5 materials. The effective parameter €* is then an analytic function of two

! complex variables h,=¢, /e, and h,=¢ /e, with Ime* >0 on

. 1 "1'73 2 T2°73

. {Im h1 >01 % {1Im h2 >0} . The key step in the extension is to obtain a represen-~

tation formula analogous to (3). Using Cauchy's theorem in several variables we
have proven the following for the polydisc p? = {illi< 1} x [[c2i< 1} : for

f(cl,cz) to be analytic with non-negative real part in D2 it is necessary

and sufficient that f may be represented as

[
f(t;l,:,z) = iv(0,0) +%} { H +H1+H —l)dp(tl,tz) , (5)

- A LU
l‘l.l‘-
1 S

¢|

5"

T

% 4
LA
S

it 't
where Hj = (e ) / (e —Cj y 3=1,2, v = Inf, and u € Mq .
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3
Mq = {positive Borel measures of mass q on the torus TZ
) i(ntl+mt2)
N satisfying the condition f [ e d“(tl'to) =0 (6)
da 5 -
SN T
EN

v &
l'.‘

3
when nm < O } .

We evaluate (5) with du(tl,tz) = dvl(t1)>:dt2+-dtlx dvz(cz) » where vy and
v, are positive measures on the circle. Let t? = {In s, >0} x {Im szi>0} .

where each factor U is conformally equivalent to the disc D , with s]_=]./(1-hl)

and s, 2)
2

v2ud2U (([0,1) XR)U (R* [0,1)))S with Im K>0 on U> and K(@,®)=0 ,

=]./(1—h2). Now, a function K(sl,s analytic on

2

"=" denotes complex conjugation and "¢" demotes complementation in R" ,

where
has the representation

dul(zl) d“z(zz)

K(s + (7)

1,82)

[ R L
Ot
-

278, z,-s,
1
K(sl’SZ) = —F(sl,sz) then the expansion of F(sl,s

and UZ are positive measures arising from vl and vz . If

2) corresponding to (4)

forces the masses of U, and U to be and Py > the volume fractions

1 2 Py
of media 1 and 2, respectively. If Hy and M, are point masses at

z. =2, =0 then B on the torus is an extreme point of M

1 2 Such u give

o
P17P)
the real Wiener bounds. When the material is statistically isotropic F has a

non-zero second order crossterm in its expansion, so that (7) is not applicable.

However, the function G = F / (l-—%'F) has the expansion

Pp Py P P 0 . .
G(s,48,) = —+ =+ =4+ <4 —— + ,,, . Letting K= -G with u, and 4
1’72 s s 2 2 s.s, 1 2
1 2 ds1 d52 172

point masses at z, = z, = 1/d gives the real Hashin-Shtrikmau bounds for

1

three-component materials.




4
Currently we are working on proving for the first time complex versions
L4 .
("’ of the Wiener and Hashin - Shtrikman bounds for three-component materiais which
agry restrict F to regions bounded by circular arcs. 1In our formalism, establishing
éif these bounds and the previous real ones depends on showing that for fixed
S (¢.,%,) € D2 , the extremal values of the linear functional f._ () on M
-t 1’72 Gq98 1
AN 1’72
i are attained when du = § ,xdt, or dp =dt, x8 . , where t¥,t*¥ € [0,27) .
- . t 2 1 t 1’72
NN 1 2
fﬁf We have evidence that such a statement is true and are working to prove it.
4o : .
RN These matters will be contained in the author's Ph.D. thesis.
. Underlying a full understanding of the three-component problem is the
*, .‘"> I3 I3 . ol
u}_ characterization of the set of extreme points of Ml. Rudin [5] and McDonald [8]
ijc have given examples of these extreme points but a full characterization of
"
N them is still unknown. It is not even known if all the extreme points are
v . 2
£ singular with respect to the Haar measure on T . We propose to analyze the
:iﬁ: extremal structure of Ml . One way of gaining insight is to consider the set
o o nxn . . . - ) )
x of positive measures Ml satisfying the Fourier condition in (6) living
\ ~ not on T2 , but on a discrete model of T2 , namely Tixn = {mo,wl,...,wn-l} x
-"-.
" . n-1
o 0 1 n- i2n/n
S X {036 e @ l} , w=e / . For a measure d. = | ai_G { on
- i,j=0 I ,wJ
, 2 2 2
T , condition (6) gives (m-1)"+1 equations in the n~ unknowns aij'
nxn .
x
We have an algorithm which enumerates all the extreme puints of MT o , which
. nz—(n-l)z—l - . nxn
‘ is a convex compact subset of R . Hopefully, analysis of Ml
T will shed some light on the structure of M, . We should also mention that
:{:- McDonald [8] has established an isomorphism between Ml ‘and a certain family
DA% Q of linear operators on the disc algebra. Analvzing the extreme points of Q

should give information about those of Ml.

In {4] we rederive the classical Hashin-Shtrikman bounds for three-component
materials using analytic contiuuation. Milton [7] has shown that for certain
volume fraction regimes these bounds are not optimal, i.c. there does not

exist a material that attains them. He conjectures tighter "bounds," but as

yet they remain unproved. We hopc to segtle this question using the methods




*l
4 o

we have developed. One approach is to understand more fully the fractional
linear transformations of F(sl,sz) that we use to derive bounds on &* , in
the hope of finding one that might yield better bounds for certain volume
fractions. Since certain transformations of F induce a nonlinear mapping
from Mq into Mq , @ related approach is to look for exireme points
different from the ones used.in the beginning of this section that would

perhaps give better bounds for certain volume fractions.

Finally, in section 1 we alluded to a procedure which gives bounds
incorporating nth order information in (4). We hope to do the same for multi-

component media by using fractional linear transformations.

3. Application to the Conductivity Problem in Bond Percolaticn

If the heterogeneous "material" is a square lattice composed of bonds of

conductivity 0] with probability Py and 02 with probability Py = 1-—pl ,
then at percolation (h= 01/02:=0 or s=1) the expansion cf (3) gives
0 1 2
F) = Q00 + P e + P op+ oL, (8)

where F = 1-—0*/02 , ao* 1is the effective conductivity of the lattice and the

u(n) are the moments of U . Expansion (4) gives

(n)

TR S D

r - ->
| P(dw)Xl((Fxl)nek)'ek ) (9)
Q

Bergman and Kantor [9] realized that since the bonds are independent, the

moments u(n)

can he calculated in terms of polvnomials in Py with coefficients
composed of infinite series involving the lattice Green's function g(x,y} with

d ..
X,y € 2. Independently, we computed the first four moments of

woowith
: d
. (0) _ (L) _ . (2 N TG 2 + o~ .
4| =Py M = plpz/d and u = J.:,—:1(Dl_(l)jg,(O,O)) ) A3(pl)-v(Dkag(O,U,;p]A:\g];‘
+ -
where Dij denotes the k,] sccond difference, and
N
N - N N-k N-k+1
Agpy) = Gpp)7 + SRACE D N N .
k=1
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The fourth moment imvolves one of the above-mentioned infinite series.

Note that for d=2 the Keller relation m(h)m(l/h) =1 determines the odd
moments of U in terms of lower order even moments. While we understand

the general structure of the nth moment and could with great patience compute,
say, the ZOth, we have as yet been unable to write down a general formula
u(n). To understand the percolation threshold one must understand the

(n)

properties cf i for large n. The hope is that perhaps for d=2 we
(n)
y

for
will be able to extract enough information about the to analyze the
critical exponent and critical probability. We would like to apply graph
theoretic methods to the problem as the expansion (&) is similar to those

that arise in quantum field theory and statistical mechanics. Another approach
is to use the procedure alluded to at the end of section 1 to obtain tighter

bounds on F(1l) as more of the moments of WU are known.
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